
[Renin, 2(5): May, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1132-1139]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
Implementation of Adaptive Steganalysis Of LSB Replacement in Colour Images

A.S.Renin *1, Dr.P.Ramamoorthy2
*1,2Department of ECE, SNS College of Technology, Coimbatore, India

as.renin1802@yahoo.in
Abstract

 This paper deals with the detection of hidden bits in the Least Significant Bit (LSB) plane of a natural
colour image. The mean Level and the covariance matrix of the image, considered as a quantized Gaussian random
matrix, are unknown. An adaptive statistical test is preferred such that its probability distribution is always
independent of the unknown image parameters, while ensuring a high probability of hidden bits detection. The
pixel of the original image and the cover image will be changed and detected by the detection algorithm. This test
is based on the likelihood ratio test except that the unknown parameters are replaced by estimates based on a local
linear regression model. It is shown that this test maximizes the probability of detection as the image size becomes
arbitrarily large and the quantization step vanishes. This provides an asymptotic upper-bound for the detection of
hidden bits based on the LSB replacement mechanism. Numerical results on real natural images show the
relevance of the method and the sharpness of the asymptotic expression for the probability of detection.

Keywords: Adaptive detection, information hiding, natural image, nuisance parameters, statistical hypotheses
testing.

Introduction

In simple words, Steganography can be
defined as the art and science of invisible
communication. This is accomplished through hiding
information in other information, thus hiding the
existence of the communicated information.

Though the concept of steganography and
cryptography are the same, but still steganography
differs from cryptography. Cryptography focuses on
keeping the contents of a message secret,
steganography focuses on keeping the existence of a
message secret. Steganography and cryptography are
both ways to protect information from unwanted
parties but neither technology alone is perfect and
can be compromised. Once the presence of hidden
information is revealed or even suspected, the
purpose of steganography is partly defeated. The
strength of steganography can thus be amplified by
combining it with cryptography.

 Almost all digital file formats can be used
for steganography, but the formats that are more
suitable are those with a high degree of redundancy.
Redundancy can be defined as the bits of an object
that provide accuracy far greater than necessary for
the object's use and display. The redundant bits of an
object are those bits that can be altered without the
alteration being detected easily. Image and audio files
especially comply with this requirement, while

research has also uncovered other file formats that
can be used for information hiding.

Given the proliferation of digital images,
especially on the Internet, and given the large amount
of redundant bits present in the digital representation
of an image, images are the most popular cover
objects for steganography. Ill the domain of digital
images many different image file format exit, most of
them for specific applications. For these different
image file formats, different steganographic
algorithms exist.

 The most studied algorithm is
undoubtedly the simple yet popular technique of
hiding in the Least Significant Bit (LSB) of the cover
image either in the pixel or transform domain, or its
variants. There can be no doubt that replacement of
LSBs in digital images is a poor choice for
steganography but it remains popular in free
steganography software. Moreover, this is the
mechanism which inspires the majority of existing
hiding methods. Broadly, the literature contains three
main classes of detectors for LSB replacement.
Numerical experiments on real images and
comparisons with existing detection algorithms
confirm the statistical performances of the test.

The most studied algorithm is undoubtedly
the simple yet popular technique of hiding in the
Least Significant Bit (LSB) of the cover image either

[Renin, 2(5): May, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1132-1139]

in the pixel or transform domain, or its variants.
There can be no doubt that replacement of LSBs in
digital images is a poor choice for steganography but
it remains popular in free steganography software.
Moreover, this is the mechanism which inspires the
majority of existing hiding methods. Broadly, the
literature contains three main classes of detectors for
LSB replacement. Numerical experiments on real
images and comparisons with existing detection
algorithms confirm the statistical performances of the
test.

Fig 1:Block Diagram LSB Replacement

In this section we deal with data encoding in

still digital images. In essence, image steganography
is about exploiting the limited powers of the human
visual system (HVS). Within reason, any plain text,
cipher text, other images, or anything that can be
embedded in a bit stream can be hidden in an image.
Image steganography has come quite far in recent
years with the development of fast, powerful
graphical computers, and steganographic software is
now readily available over the Internet for everyday
users.

Least Significant Bit Insertion Technique

LSB (Least Significant Bit) substitution
is the process of adjusting the least significant bit
pixels of the carrier image. It is a simple approach for
embedding message into the image. The Least
Significant Bit insertion varies according to number
of bits in an image. For an 8 bit image, the least
significant bit i.e., the 8th bit of each byte of the
image is changed to the bit of secret message. For 24
bit image, the colours of each component like RGB
(red, green and blue) are changed. LSB is effective in
using BMP images since the compression in BMP is
lossless. But for hiding the secret message inside an
image of BMP file using LSB algorithm it requires a
large image which is used as a cover. LSB
substitution is also possible for GIF formats, but the
problem with the GIF image is whenever the least
significant bit is changed the whole colour palette

will be changed. The problem can be avoided by only
using the gray scale GIF images since the gray scale
image contains 256 shades and the changes will be
done gradually so that it will be very hard to detect.
For JPEG, the direct substitution of steganographic
techniques is not possible since it will use lossy
compression. So it uses LSB substitution for
embedding the data into images.

One of the most common techniques used in
steganography today is called least significant bit
(LSB) insertion. This method is exactly what it
sounds like; the least significant bits of the cover-
image are altered so that they form the embedded
information. The following example shows how the
letter A can be hidden in the first eight bytes of three
pixels in a 24-bit image.
Pixels: (00100111 11101001 11001000)
 (00100111 11001000 11101001)
 (11001000 00100111 11101001)
 A: 01000001
Result: (00100110 11101001 11001000)
 (00100110 11001000 11101000)
 (11001000 00100111 11101001)

The three underlined bits are the only three

bits that were actually altered. LSB insertion requires
on average that only half the bits in an image be
changed. Since the 8-bit letter A only requires eight
bytes to hide it in, the ninth byte of the three pixels
can be used to begin hiding the next character of the
hidden message. A slight variation of this technique
allows for embedding the message in two or more of
the least significant bits per byte. This increases the
hidden information capacity of the cover-object, but
the cover-object is degraded more, and therefore it is
more detectable. Other variations on this technique
include ensuring that statistical chain the image do
not occur. Some intelligent software also checks for
areas that are made up of one solid color. Changes in
these pixels are then avoided because slight changes
would cause noticeable variations in the area.

While LSB insertion is easy to implement, it
is also easily attacked. Slight modifications in the
color palette and simple image manipulations will
destroy the entire hidden message. In a “typical”
natural scene, the number of even gray values is not
the same as the number of odd values. If you embed a
0-1 message string into the least significant bits
(LSBs) of an image, then (since it is uniformly
distributed), there will be approximately the same
number of even and odd values. Statistical “attack” to
detect this anomaly, using chi-square statistic.
Transform techniques embed the message by
modulating coefficients in a transform domain, such
as the Discrete Cosine Transform (DCT) used in
JPEG compression, Discrete Fourier Transform, or

[Renin, 2(5): May, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1132-1139]

Wavelet Transform. These methods hide messages in
significant areas of the cover-image, which make
them more robust to attack. Transformations can be
applied over the entire image, to block throughout the
image, or other variants. Data hiding techniques
operate in two existing domains, spatial domain and
frequency domain.

lena.bmp 6th bit plane

 4th bit plane LSB plane

Figure 2. LSB Insertion

 The LSB steganography technique is the
most common form of technique in spatial domain.
This technique makes use of the fact that the least
significant bits in an image could be thought of as
random noise and changes to them would not have
any effect on the image. In Transform domain,
embedding is done by altering DCT (Discrete Cosine
Transform) coefficients. One of the constraints in
transform domain is that many of the coefficients are
zero and altering them changes the compression rate
of the image. That is why the information carrying
capacity of an image is much lesser in transform
domain than in spatial domain. Two popular
transform domain steganography algorithm are F5
and Out Guess. F5 has two important features. First,
it permutes the DCT coefficients before embedding
aiming to distribute the induced changes uniformly
over the image. Second, it employs matrix
embedding to minimize the amount of change made
to DCT coefficients. Outguess is also a two step
algorithm. It first identifies redundant DCT
coefficients which have minimal effect on the cover
image, and then depending on the information
obtained in initial steps, chooses bits in which it
would embed the message. Both F5 and OutGuess
have been successfully attacked. Two other tools
available on the internet for LSB steganography in
transform domain are JSteg and JPHide. While JSteg
modifies all the DCT coefficients, JPHide modifies

some predecided set of coefficients and hence is more
difficult to detect. More sophisticated techniques try
to model image statistics and try to minimize changes
to them. For example, the method in, the transformed
image coefficients are broken down into two parts
and replaces the perceptually insignificant component
with the coded message signal. There is some work
on exploring what is a good cover medium. For
example, good cover media are selected given some
knowledge about the steganalysis tool.
 Steganalysis is the science of detecting
steganography. Most methods only aim to detect
whether a medium contains hidden data and do not
seek to recover the hidden message as well as that is
a very hard problem in a general setting. Steganalysis
methods can be classified into two categories
1.Specific to a particular steganographic algorithm.
2.Universal steganalysis
 Obviously, success rate with former kind of
methods is much higher. Provos et al [8] present a
tool Steg Detect which is targeted at JSteg, JPHide
and OutGuess. They show good detection results and
high processing speeds and further use this tool to
crawl the internet and find steganographic images.
Most steganalysis techniques in the second category
look at how the embedding modifies the statistics of
the medium but many of them do not take into
account that medium are images which have certain
characteristic statistics. However, does try to exploit
natural image statistics to some extent. None of the
methods make any assumption about the kind of data
hidden inside the medium. Universal steganalysis
techniques essentially design a classifier based on a
training set of cover-objects and stego-objects
obtained from a variety of embedding algorithms.
Note that none of these techniques allow for
recovering the hidden images automatically. In this
paper, we are aiming to develop tools which can
automatically recover hidden images in LSB
steganography scheme.
Kharrazi et al [6] do a comprehensive study of
available steganalyzers and study their performance
with varying image parameters like size, JPEG
compression factors, compression artifacts etc. We
are more interested in correlating some image
statistics of cover or hidden images with the ability to
detect steganography.

Image Encoding Techniques

Information can be hidden many different
ways in images. Straight message insertion can be
done, which will simply encode every bit of
information in the image. More complex encoding
can be done to embed the message only in ``noisy''
areas of the image, that will attract less attention. The

[Renin, 2(5): May, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1132-1139]

message may also be scattered randomly throughout
the cover image.

The most common approaches to
information hiding in images are:

• Least significant bit (LSB) insertion
• Masking and filtering techniques
• Algorithms and transformations
• Each of these can be applied to various

images, with varying degrees of success.
Each of them suffers to varying degrees
from operations performed on images, such
as cropping, or resolution decrementing, or
decreases in the color depth.

DCT Encoding

When working with larger images of greater
bit depth, the images tend to become too large to
transmit over a standard Internet connection. In order
to display an image in a reasonable amount of time,
techniques must be incorporated to reduce the
image's file size. These techniques make use of
mathematical formulas to analyze and condense
image data, resulting in smaller file sizes. This
process is called compression . In images there are
two types of compression. lossy and lossless
compression . Compression plays a very important
role in choosing which steganographic algorithm to
use. Lossy compression techniques result in smaller
image file sizes, but it increases the possibility that
the embedded message may be partly lost due to the
fact that excess image data will be removed. Lossless
compression.though, keeps the original digital image
intact without the chance of lost, although is does not
compress the image to such a small file size. To
compress an image into JPEG format, the RGB
colour representation is first converted to a YUV
representation. In this representation the Y
component corresponds to the luminance (or
brightness) and the U and V components stand for
chrominance (or color). According to research the
human eye is more sensitive to changes in the
brightness (luminance) of a pixel than to changes in
its color. This fact is exploited by the JPEG
compression by down sampling the color data to
reduce the size of the file. The color components (U
and V) are halved in horizontal and vertical
directions, thus decreasing the file size by a factor of
2.

The next step is the actual transformation of
the image. For JPEG ,the Discrete Cosine Transform
(DCT) is used, but similar transforms are for example
the Discrete Fourier Transform (DIT). These
mathematical transforms convert the pixels in such a
way as to give the effect of "spreading" the location
of the pixel values over part of the image. The DCT

transforms a signal from an image representation into
a frequency representation, by grouping the pixels
into 8 x 8 pixel blocks and transforming the pixel
blocks into 64 DCT coefficients each. A modification
of a single DCT coefficient will affect all 64 image
pixels in that block.

The next step is the quantization phase of
the compression. Here another biological property of
the human eye is exploited: The human eye is fairly
good at spotting small differences in brightness over
a relatively large area, but not so good as to
distinguish between different strengths in high
frequency brightness. This means that the strength of
higher frequencies can be diminished, without
changing the appearance of the image. JPEG does
this by dividing all the values in a block by a
quantization coefficient. The results are rounded to
integer values and the coefficients are encoded using
Huffman coding to further reduce the size.

Originally it was thought that steganography
would not be possible to use with JPEG images, since
they use lossy compression which results in parts of
the image data being altered. One of the major
characteristics of steganography is the fact that
information is hidden in the redundant bits of an
object and since redundant bits are left out when
using JPEG it was feared that the hidden message
would be destroyed. Even if one could somehow
keep the message intact it would be difficult to
embed the message without the changes being
noticeable because of the harsh compression applied.
However, properties of the compression algorithm
have been exploited in order to develop a
steganographic algorithm for JPEGs.

One of these properties of JPEG is exploited
to make the changes to the image invisible to the
human eye. During the DCT transformation phase of
the compression algorithm, rounding errors occur in
the coefficient data that are not noticeable. Although
this property is what classifies the algorithm as being
lossy, this property can also be used to hide
messages.

It is neither feasible nor possible to embed
information in an image that uses lossy compression,
since the compression would destroy all information
in the process. Thus it is important to recognize that
the JPEG compression algorithm is actually divided
into lossy and lossless stages . The DCT and the
quantization phase form part of the lossy stage, while
the Huffman encoding used to further compress the
data is lossless. Steganography can take place
between these two stages. Using the same principles
of LSB insertion the message can be embedded into
the least significant bits of the coefficients before
applying the Huffman encoding. By embedding the
information at this stage, in the transform domain, it

[Renin, 2(5): May, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1132-1139]

is extremely difficult to detect, since it is not in the
visual domain.

Due to the nature of the compression
algorithm, JPEG is excellent at compressing full-
color (24-bit) photographs, or compressing grayscale
photos that include many different shades of gray.
The JPEG algorithm does not work well with web
graphics, line art, scanned text, or other images with
sharp transitions at the edges of objects. The reason
this is so will become clear in the following sections.
JPEG also features an adjustable compression ratio
that lets a user determine the quality and size of the
final image. Images may be highly compressed with
lesser quality, or they may forego high compression,
and instead be almost indistinguishable from the
original.

JPEG compression and decompression
consist of 4 distinct and independent phases. First,
the image is divided into 8 x 8 pixel blocks. Next, a
discrete cosine transform is applied to each block to
convert the information from the spatial domain to
the frequency domain. After that, the frequency
information is quantized to remove unnecessary
information. Finally, standard compression
techniques compress the final bit stream. This report
will analyze the compression of a grayscale image,
and will then extend the analysis to decompression
and to color images.
Phase One: Divide the Image

Attempting to compress an entire image
would not yield optimal results. Therefore, JPEG
divides the image into matrices of 8 x 8 pixel blocks.
This allows the algorithm to take advantage of the
fact that similar colors tend to appear together in
small parts of an image. Blocks begin at the upper
left part of the image, and are created going towards
the lower right. If the image dimensions are not
multiples of 8, extra pixels are added to the bottom
and right part of the image to pad it to the next
multiple of 8 so that we create only full blocks. The
dummy values are easily removed during
decompression. From this point on, each block of 64
pixels is processed separately from the others, except
during a small part of the final compression step.

Phase one may optionally include a change
in colorspace. Normally, 8 bits are used to represent
one pixel. Each byte in a grayscale image may have
the value of 0 (fully black) through 255 (fully white).
Color images have 3 bytes per pixel, one for each
component of red, green, and blue (RGB color).
However, some operations are less complex if you
convert these RGB values to a different color
representation. Normally, JPEG will convert RGB
colorspace to YCbCr colorspace. In YCbCr, Y is the
luminance, which represents the intensity of the
color. Cb and Cr are chrominance values, and they

actually describe the color itself. YCbCr tends to
compress more tightly than RGB, and any colorspace
conversion can be done in linear time. The
colorspace conversion may be done before we break
the image into blocks; it is up to the implementation
of the algorithm.

Finally, the algorithm subtracts 128 from
each byte in the 64-byte block. This changes the
scale of the byte values from 0…255 to –128…127.
Thus, the average value over a large set of pixels will
tend towards zero.

The following images show an example
image, and that image divided into an 8 x 8 matrix of
pixel blocks. The images are shown at double their
original sizes, since blocks are only 8 pixels wide,
which is extremely difficult to see. The image is 200
pixels by 220 pixels, which means that the image will
be separated into 700 blocks, with some padding
added to the bottom of the image. Also, remember
that the division of an image is only a logical
division, but in figure 1 lines are used to add clarity.

Before:

 After:
Figure 3: Example of Image Division

Phase Two: Conversion to the Frequency Domain
At this point, it is possible to skip directly to

the quantization step. However, we can greatly assist
that stage by converting the pixel information from
the spatial domain to the frequency domain. The
conversion will make it easier for the quantization
process to know which parts of the image are least
important, and it will de-emphasize those areas in
order to save space.

Currently, each value in the block represents
the intensity of one pixel (remember, our example is
a grayscale image). After converting the block to the
frequency domain, each value will be the amplitude
of a unique cosine function. The cosine functions
each have different frequencies. We can represent

[Renin, 2(5): May, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1132-1139]

the block by multiplying the functions with their
corresponding amplitudes, then adding the results
together. However, we keep the functions separate
during JPEG compression so that we may remove the
information that makes the smallest contribution to
the image.

There are many algorithms that convert
spatial information to the frequency domain. The
most obvious of which is the Fast Fourier Transform
(FFT). However, due to the fact that image
information does not contain any imaginary
components, there is an algorithm that is even faster
than an FFT. The Discrete Cosine Transform (DCT)
is derived from the FFT, however it requires fewer
multiplications than the FFT since it works only with
real numbers. Also, the DCT produces fewer
significant coefficients in its result, which leads to
greater compression. Finally, the DCT is made to
work on one-dimensional data. Image data is given
in blocks of two-dimensions, but we may add another
summing term to the DCT to make the equation two-
dimensional. In other words, applying the one-
dimensional DCT once in the x direction and once in
the y direction will effectively give a two-
dimensional discrete cosine transform.

The 2D discrete cosine transform equation is
given in figure 2, where C(x) = 1/√2 if x is 0, and
C(x) = 1 for all other cases. Also, f (x, y) is the 8-bit
image value at coordinates (x, y), and F (u, v) is the
new entry in the frequency matrix.

() () () () () ()







 ⋅+⋅+⋅= ∑∑
= =

7

0

7

0 16

12
cos

16

12
cos,

4

1
,

x y

vyux
yxfvCuCvuF

ππ

We begin examining this formula by
realizing that only constants come before the
brackets. Next, we realize that only 16 different
cosine terms will be needed for each different pair of
(u, v) values, so we may compute these ahead of time
and then multiply the correct pair of cosine terms to
the spatial-domain value for that pixel. There will be
64 additions in the two summations, one per pixel.
Finally, we multiply the sum by the 3 constants to get
the final value in the frequency matrix. This
continues for all (u, v) pairs in the frequency matrix.
Since u and v may be any value from 0…7, the
frequency domain matrix is just as large as the spatial
domain matrix.

The frequency domain matrix contains
values from -1024…1023. The upper-left entry, also
known as the DC value, is the average of the entire
block, and is the lowest frequency cosine coefficient.
As you move right the coefficients represent cosine
functions in the vertical direction that increase in
frequency. Likewise, as you move down, the
coefficients belong to increasing frequency cosine
functions in the horizontal direction. The highest

frequency values occur at the lower-right part of the
matrix. The higher frequency values also have a
natural tendency to be significantly smaller than the
low frequency coefficients since they contribute
much less to the image. Typically the entire lower-
right half of the matrix is factored out after
quantization. This essentially removes half of the
data per block, which is one reason why JPEG is so
efficient at compression.
Phase Three: Quantization

Having the data in the frequency domain
allows the algorithm to discard the least significant
parts of the image. The JPEG algorithm does this by
dividing each cosine coefficient in the data matrix by
some predetermined constant, and then rounding up
or down to the closest integer value. The constant
values that are used in the division may be arbitrary,
although research has determined some very good
typical values. However, since the algorithm may
use any values it wishes, and since this is the step that
introduces the most loss in the image, it is a good
place to allow users to specify their desires for
quality versus size.

The algorithm uses the specified final image
quality level to determine the constant values that are
used to divide the frequencies. A constant of 1
signifies no loss. On the other hand, a constant of
255 is the maximum amount of loss for that
coefficient. The constants are calculated according to
the user’s wishes and the heuristic values that are
known to result in the best quality final images. The
constants are then entered into another 8 x 8 matrix,
called the quantization matrix. Each entry in the
quantization matrix corresponds to exactly one entry
in the frequency matrix. Correspondence is
determined simply by coordinates, the entry at (3, 5)
in the quantization matrix corresponds to entry (3, 5)
in the frequency matrix.

The equation used to calculate the quantized
frequency matrix is fairly simple. The algorithm
takes a value from the frequency matrix (F) and
divides it by its corresponding value in the
quantization matrix (Q). This gives the final value
for the location in the quantized frequency matrix (F
quantize). Figure 3 shows the quantization equation that
is used for each block in the image.

() ()
() 5.0

,

,
, +








=

vuQ

vuF
vuFQuantize

Noise
Impulse noise is caused by malfunctioning

pixels in camera sensors, faulty memory locations in

[Renin, 2(5): May, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1132-1139]

hardware, or transmission in a noisy channel. See [5]
for instance. Two common types of impulse noise
are the salt-and-pepper noise and the random-valued
noise.

Results

Figure 3:Result for Loading the Image

Figure 4: Result for Preanalysis

Figure 5: Result for Encoding

Figure 6: Noise Intrusion

Figure 7:Output for Decoing when noise is intruded

Figure 8: Removal of noise

[Renin, 2(5): May, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1132-1139]

Figure 9: Decoding Process

Figure 3: Output of Decoding(Hidden information is a

text)
FRANKLIN JOEL

Conclusion

Steganography can be used for hidden
communication. The limits of steganography are
explained. The image steganographic system using
LSB approach to provide a means of secure
communication is discussed. In this approach, the
message bits are embedded into the least significant
bits of cover image pixels. As presented, LSB
Embedding has the advantage that it is simple to
implement. This is especially true in the 24-bit
bitmap case. It also allows for a relatively high
payload, carrying one bit of the secret image per byte
of pixel data. In addition, it is also seemingly
undetectable by the average human if done right.
However, the assumption has been that the stego-
image is indistinguishable from the original cover
image by the human eye. There have been many
statistical techniques developed to determine if an
image has been subjected to LSB Embedding.

Acknowledgement
I Extend my heartfull thanks to my College

as well as to my department .

References
[1] H. Sencar, M. Ramkumar, and A. Akansu,

Data Hiding Fundamentals and
Applications: Content Security in Digital
Multimedia. Elsevier: Academic, 2004.

[2] I. Cox, M. Miller, J. Bloom, J. Fridrich, and
T. Kalker, Digital Watermarking and
Steganography. San Francisco, CA: Morgan
Kaufmann,2007.

[3] J. Fridrich, Steganography in Digital
Media—Principles, Algorithms, and
Applications. New York: Cambridge Univ.
Press, 2009.

[4] R. Böhme, Advanced Statistical
Steganalysis. New York: Springer,2010.

[5] N. Provos and P. Honeyman, “Hide and
seek: An introduction to steganography,”
IEEE Secur. Priv. J., vol. 1, no. 3, pp. 32–
44, 2003.

[6] X.-Y. Luo, D.-S. Wang, P. Wang, and F.-L.
Liu, “A review on blind detection for image
steganography,” Signal Process., vol. 88, no.
9, pp.2138–2157, Sep. 2008.

[7] A. Nissar and A. Mir, “Classification of
steganalysis techniques: A study,” Digit.
Signal Process., vol. 20, no. 6, pp. 1758–
1770, 2010.

[8] R. Cogranne, C. Zitzmann, L. Fillatre, F.
Retraint, I. Nikiforov, and P.Cornu,
“Statistical decision by using quantized
observation,” in Proc.Int. Symp. Inf. Theory,
St. Petersburg, Russian, 2011, pp. 1135–
1139.

[9] R. Gray and D. Neuhoff, “Quantization,”
IEEE Trans. Inf. Theory, vol.44, pp. 2325–
2384, 1998.

